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Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus

nerve has been receiving attention due to its therapeutic potential for neuropsychiatric

disorders. Although the mechanism of tVNS is not yet completely understood, studies

have demonstrated the potential role of vagal afferent nerve stimulation in the regulation

of mood and visceral state associated with social communication. In addition, a growing

body of evidence shows that tVNS can activate the brain regions associated with Autism

Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment

effects for comorbid disorders of ASD such as epilepsy and depression. We thus

hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid

epilepsy and depression, but also for the core symptoms of ASD. The goal of this

manuscript is to summarize the findings and rationales for applying tVNS to treat ASD

and propose potential parameters for tVNS treatment of ASD.

Keywords: Autism Spectrum Disorder, transcutaneous electric nerve stimulation, ear, vagus nerve,

transcutaneous vagus nerve stimulation, Non-invasive vagus nerve stimulation

INTRODUCTION

Autism Spectrum Disorders (ASD) refers to a group of lifelong neurodevelopmental disorders,
characterized by persistent deficits in social communication and restricted, repetitive behavior
(McPartland et al., 2012). The prevalence of ASD has rapidly increased to over 2% and has become
a significant public health concern (Kim et al., 2013; Zablotsky et al., 2014). Currently, the etiology
of ASD remains unclear, and there is still no targeted treatment. Thus, there is an urgent need to
develop new therapies for ASD.

Here, we propose transcutaneous vagus nerve stimulation (tVNS) on the ear as a promising
method for treatment of ASD. The vagus nerve consists of a complex network that regulates one’s
neuro-endocrine-immune axis mood, pain, and memory (Yuan and Silberstein, 2016). It serves as
a control center that integrates interoceptive information and responds with appropriate adaptive
modulatory feedbacks (Yuan and Silberstein, 2016).

Vagus Nerve Stimulation (VNS) has been used for more than 20 years as an non-
pharmacological treatment epilepsy depression (George et al., 2000; Kosel and Schlaepfer, 2002;

Abbreviations: tVNS, transcutaneous vagus nerve stimulation; ASD, autism spectrum disorders; VNS, vagus nerve

stimulation; GABA, gamma aminobutyric acid; fMRI, functional magnetic resonance imaging; rsFC, resting state functional

connectivity.
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Daban et al., 2008; Yuan and Silberstein, 2016). VNS requires
surgical implantation of a bipolar electrode around the left
cervical vagus nerve and a pulse generator under the skin of
the left chest (George et al., 2000). Intermittent electrical signals
sent from the generator at a low frequency stimulate the cervical
vagus nerve and conduct to various regions of the brain (George
et al., 2000). After the efficacy and safety of VNS was verified,
VNS was approved by the US Food and Drug Administration for
treatment-resistant epilepsy in 1997 and for treatment-resistant
depression in 2005. The main side-effects of VNS in patients
include surgical complications, dyspnea, parasthesia, headache,
pain, pharyngitis, hoarseness, cough, and throat discomfort
(Ramsay et al., 1994; Ben-Menachem et al., 2015). The precise
mechanism of VNS for treatment is still unknown. It was believed
that the vagus nerve is linked to brain regions involved in mood
regulation, such as the prefrontal cortex and amygdala which can
produce antidepression effect (George et al., 2000; Drevets et al.,
2002).

The surgical risks and potentially significant side effects have
limited this treatment’s use in patients with Major Depressive
Disorder who have been treated for depression but failed to
respond to at least 4 prescribed medications and/or tried somatic
treatment options such as electroconvulsive therapy (Daban
et al., 2008). The therapeutic potential of VNS has led to the
development of non-invasive VNS, which greatly reduces the
risks associated with the old procedure (Ben-Menachem et al.,
2015). The tVNS is a safe, non-invasive, and low-cost method
modified from VNS (Kraus et al., 2007; Dietrich et al., 2008;
Kreuzer et al., 2012). The rationale of tVNS at the ear is that
anatomical studies suggest that the ear is the only location on the
surface of the human body where there is afferent vagus nerve
distribution (Peuker and Filler, 2002). According to the “bottom-
up” mechanism of the central nervous system, the propagation
of electric stimuli might follow an inverse path from peripheral
nerves toward the brain stem and central structures to produce
therapeutic effect (Shiozawa et al., 2014).

The support for applying tVNS as a treatment for ASD
can be summarized in four points: (1) Impaired social-
emotional communication skills and repetitive behavior are
two core symptoms in ASD from very early childhood to
adulthood. The vagus nerve is a key component in regulating
the autonomic nervous system, social-emotional function, and
adaptive behavior. Investigators found that VNS may have
positive social-emotional effects independent of seizure control
in patients with intractable epilepsy and ASD (Porges, 1997;
Murphy et al., 2000; Levy et al., 2010; Hull et al., 2015). (2) Studies
have suggested that abnormally functioning connections within
and between the frontal, temporal and parietal cortices, and
subcortical structure (thalamus, amygdala, and hippocampus)
are involved in the social dysfunction and repetitive behavior
seen in ASD (Cheng et al., 2015). Vagal stimulation can modulate
the cortical and subcortical (particularly the amygdala and
thalamus) functions, which may in turn regulate the disturbed
brain function of ASD (Kraus et al., 2007; Frangos et al.,
2015). (3) Disturbed immune function is frequently observed
in ASD individuals, the hypothesis of altered immune response
in ASD has been proposed (Gesundheit et al., 2013). Studies

suggest that stimulation of the vagus nerve could downregulates
inflammatory cytokine release (Lerman et al., 2016) (4) tVNS
could treat the comorbidities of ASD, such as epilepsy(Park,
2003) and depression (Fang et al., 2016; Rong et al., 2016). In
addition, studies suggest that the pathogenesis of ASD, epilepsy
and depression may overlap, (Tuchman and Rapin, 2002) and
tVNS might have a treatment effect on a common pathway of
these three disorders (Lulic et al., 2009; Fang et al., 2016).

Based on the above evidence, we propose that tVNS should be
included as a treatment option for ASD (Figure 1). The aim of
this manuscript is to summarize the findings and mechanisms of
tVNS treatment for ASD, and propose potential parameters for
its application.

tVNS CAN MODULATE THE CORE
FUNCTIONS IMPAIRED IN ASD

Vagus nerve activity can modulate emotional social interactions
and repetitive behavior of children (Porges, 1997; Levy et al.,
2010; Hull et al., 2015). According to the social engagement
system model, a high level of vagal activity is associated
with better social skills, such as synchronous mother-infant
interactions and positive affect (Porges, 2003). Low vagal activity
is associated with less vocalizing (Porges, 2001). During social
engagement, facial expressions (cranial nerve VII), listening
(cranial nerve VIII), and vocalization (cranial nerves IX, X)
can be integrated by vagus nerve activity via branches of the
vagus nerve that regulate facial, palpebral, middle-ear, laryngeal,
pharyngeal, and mastication muscles and several visceral organ
muscles (Porges, 2001).

Clinical observation and studies have shown that children
with ASD often present characteristics of low vagal activity,
such as flat facial expressions and intonation, (Yirmiya et al.,
1989; Chan and To, 2016) difficulties with vocalizing and speech
perception, decreased response to their own name and social
auditory information, and low baseline cardiac parasympathetic
activity (Porges, 2001; Ming et al., 2005; Cygan et al., 2014). Some
of these characteristics, such as low vagal tone and expressivity,
could be improved by therapies such as repetitive transcranial
magnetic stimulation and massage, which can increase vagal
activity (Cullen et al., 2005; Diego et al., 2007; Casanova et al.,
2014). For instance, touch therapy in form of massage has been
shown to improve social response and the relationship between
parents and children with Autism (Cullen et al., 2005).

Although still under debate (Danielsson et al., 2008), several
studies have shown that there are positive effects on behavior,
emotion, and social skills independent of seizure control after
VNS on individuals with ASD and epilepsy (Park, 2003; Warwick
et al., 2007; Levy et al., 2010; Hull et al., 2015).

For instance, Hull et al. reported that a steady decline
of stereotype frequency and aggressive behaviors was evident
after one year of VNS treatment in the case of a 10-
year-old boy with ASD and comorbid intractable epilepsy
and pediatric autoimmune neuropsychiatric disorder associated
with streptococcal infections (Hull et al., 2015). In addition,
the authors also found there was improvement in following
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FIGURE 1 | Action mechanism of tVNS on treatment for ASD and the location of vagus nerve distribution in ear.

instructions, which is an index of receptive communication skills.
All these positive effects are independent of seizure control (Hull
et al., 2015). In another case study, Warwick et al. reported a
case of a 23-year-old male patient diagnosed with both Asperger
syndrome and bitemporal epilepsy who received VNS therapy
(Warwick et al., 2007). Both the seizure severity and behavioral
components of his Asperger syndrome were improved after
monitoring for 6 months (Warwick et al., 2007).

Levy et al. used registered data of VNS therapy outcomes
of 315 patients with intractable epilepsy but without ASD and
77 patients with both intractable epilepsy and a diagnosis of
ASD (Levy et al., 2010). They found that patients with epilepsy
and ASD achieved more quality-of-life improvements in mood
subscale at 12 months of post-implant VNS. Park et al. also
used a registered system of VNS patients’ outcomes and collected
data for 6 Landau–Kleffner syndrome patients and 59 autistic
patients with intractable seizures (Park, 2003). Landau–Kleffner
syndrome is also known as an acquired epileptic aphasia or
aphasia with convulsive disorder. The results showed that VNS
therapy improved the quality of life of patients with either
Landau–Kleffner syndrome or autism comorbid epilepsy, and the
improvement in quality of life was independent of its effects on
seizures (Park, 2003).

In addition, VNS and tVNS can improve verbal and cognition
functions, the development of which is delayed in ASD (Parker
et al., 1999; Steenbergen et al., 2015). Parker et al. found that
VNS can increase the verbal performance of patients with
epileptic encephalopathies independently from seizure frequency
improvement (Parker et al., 1999). Additional benefits of VNS
therapy include improvement in executive functions, e.g., logical
reasoning, response inhibition or impulsiveness, and memory

(Clark et al., 1999; Sackeim et al., 2001). Taken together, above
results suggest that increasing vagal activity may improve the
social and cognitive functions of ASD patients, and provide
support for applying VNS therapy on ASD. However, studies of
the effectiveness of the tVNS are still mission.

tVNS CAN MODULATE THE BRAIN
NETWORK ASSOCIATED WITH THE
NEUROPATHOLOGY OF ASD

Studies suggested that, the nucleus of the solitary tract is the
key target of afferent vagal inputs, and projects toward the locus
coeruleus, raphe nuclei, thalamus, amygdala, hippocampus, and
neocortex (Kraus et al., 2007; Frangos et al., 2015). Animal
studies have verified that vagal stimulation might induce changes
in extracellular concentrations of noradrenaline and serotonin
in the amygdala, hippocampus, and cortex (Roosevelt et al.,
2006; Ruffoli et al., 2011). Ben-Menachem et al. found increased
gamma aminobutyric acid (GABA) levels and decreased
glutamate levels in the cerebrospinal fluid after 9-months of tVNS
treatment on patients with epilepsy (Ben-Menachem et al., 1995).
Capone et al. used paired-pulse transcranial magnetic stimulation
during tVNS on healthy volunteers and recorded increased
GABAergic motor cortical activity, which could be influenced
by noradrenergic and serotonergic innervation through the
transmitter ascending system from the brainstem (Korchounov
et al., 2003; Capone et al., 2015). These studies suggest that vagal
stimulation can induce the neuronal activities of noradrenaline,
serotonin, and GABA, which may in turn lead to changes in
cortical and subcortical activity.
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Functional neuroimaging and neurochemical studies have
also shown that tVNS on the afferent branch of vagus nerve can
activate multiple brain areas involved in social and emotional
regulation (Manta et al., 2009; Polak et al., 2009; Frangos et al.,
2015). These activation patterns evoked by tVNS are similar to
brain activity changes evoked by traditional VNS (Chae et al.,
2003; Kraus et al., 2013; Frangos et al., 2015; Fang et al., 2016).

Additionally, a convergence of evidence points to abnormal
brain connectivity in ASD (Wass, 2011; Washington et al.,
2014). Resting state functional magnetic resonance imaging
(fMRI) in ASD showed decreased cortical intrinsic functional
connectivity, especially in primary parietal sensorimotor regions,
and hyperconnectivity between subcortical regions (especially
the thalamus and globus pallidus) (Di Martino et al., 2014).
Using resting state fMRI data from a relatively large sample
of 418 autism patients, Cheng et al. found reduced cortical
functional connectivity between regions associated with facial
expression processing, and emotional and social communication,
including the ventromedial prefrontal cortex, inferior temporal
gyrus, middle temporal gyrus, and superior temporal sulcus. In
addition, they also found reduced functional connectivity among
brain regions involved in spatial functions and recognition of
self and spatial environment (precuneus, superior parietal lobule
region) (Cheng et al., 2015).

In parallel, research has provided evidence for the modulation
of brain function by tVNS. In a previous study, we found
that after 1 month of tVNS treatment in depression patients,
the resting state functional connectivity (rsFC) between the
default mode network and anterior insula and parahippocampus
decreased; the rsFC between the default mode network and
precuneus and orbital prefrontal cortex increased compared with
sham tVNS (Fang et al., 2016). In another study, we found
that the rsFC in the tVNS group between the right amygdala
and left dorsolateral prefrontal cortex significantly increased
compared with sham tVNS in patients with depression. All the
rsFC increases were also associated with Hamilton Depression
Rating Scales scores’ reduction as well as reductions in the anxiety
and retardation subscales (Liu et al., 2016). These studies provide
direct evidence on the modulation effect of tVNS on rsFC in
patient population. Nevertheless, there was no direct evidence of
tVNS effects on central nervous system changes in ASD, further
research is needed.

tVNS CAN MODULATE THE IMMUNE
FUNCTION WHICH IS BELIEVED TO BE
INCLUDED IN THE ETIOLOGIC
HYPOTHESIS OF ASD

Accumulating evidence suggests that ASD is associated with
impaired immune function at both systemic and cellular levels
(Heuer et al., 2008; Masi et al., 2015). These neuroimmune
abnormalities start from a very early stage of development
and continue through the whole lifespan, which may influence
neurodevelopment and nervous system function (Heuer et al.,
2008; Krakowiak et al., 2015). Studies have verified that
dysregulation of the immune system in ASD, and changes in

immune function may impact some neurological processes in
embryogenesis, including ongoing inflammation in the brain,
elevated proinflammatory cytokine profiles in the cerebrospinal
fluid and blood, increased presence of brain-specific auto-
antibodies and altered immune cell function (Li et al., 2009;
Ashwood et al., 2011). ASD patients have high levels of glutamate
in the central nervous system, whichmight interact with immune
function (El-Ansary and Al-Ayadhi, 2014). Furthermore, these
dysfunctional immune responses are associated with increased
impairments in behaviors characteristic of the core features
of ASD, in particular, deficits in social interaction and
communication (Ashwood et al., 2011; Onore et al., 2012). These
evidences suggest that immune processes and neuro-immune
interaction play a key role in the pathophysiology of ASD.
Accordingly, the hypothesis of immune dysfunction in ASD has
been proposed for decades.

Both VNS and tVNS can modulate immune function by
a defense response and the top-down modulation mechanism
(Zhao et al., 2011; Bonaz et al., 2013). An animal study
showed that electrical stimulation of the efferent vagus nerve
inhibits the systemic inflammatory response to endotoxin
(lipopolysaccharide) administration through the release of the
vagal neurotransmitter acetylcholine (Borovikova et al., 2000).
Lerman et al. found that VNSmight downregulates inflammatory
cytokine release, providing evidence for its anti-inflammatory
effect (Lerman et al., 2016). Thus, tVNS might modulate not only
the immune function of ASD, but also the interaction between
neural plasticity and the immune system (Garay and McAllister,
2010).

PARAMETERS OF tVNS FOR TREATMENT
OF ASD

Given that the right vagal nerve projects efferent fibers to the
heart, investigators have suggested that VNS on the neck to the
cervical vagus nerve is safer on the left side of the body. Since
there are no direct fibers connecting the ear vagus nerve to the
heart (Sperling et al., 2010; Kreuzer et al., 2012) both left and right
ears should be safe for applying tVNS.

There are wholly afferent vagus nerve innervations in the
Cymba Conchae of the ear, and they mix with the great auricular
nerve and auriculotemporal nerve in the Crus of helix, Antihelix,
Tragus and Cavity of concha (Figure 1) (Peuker and Filler,
2002). Theoretically, the optimal position for tVNS is the cymba
conchae, followed by the other positions mentioned above.

In a recent study, investigators compared fMRI signal
changes evoked by tVNS at the anterior and posterior sides
of the left outer auditory canal. The results showed that fMRI
signal changes were in the opposite direction (activation vs.
deactivation) in many brain regions with the exception of
the insular cortex (positive blood oxygenation level dependent
changes in both conditions) (Kraus et al., 2013). Prominent
decreases of the blood oxygenation level dependent signals
were detected in the parahippocampal gyrus, posterior cingulate
cortex and right thalamus (pulvinar) following anterior auditory
canal wall stimulation (Kraus et al., 2013). These results suggest
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that tVNS at different locations of the ear may modulate different
brain pathways, more studies are needed to identify the optimal
tVNS location for ASD.

Very few studies have systemically investigated the optimal
frequency of tVNS. Previous studies have suggested that different
parameters of stimulation during VNS or tVNS could produce
different brain changes and neurotransmitter releases. A recent
tVNS study in migraine patients showed that although both 1
and 25 Hz tVNS can improve clinical outcome in patients with
chronic migraine, 1 Hz tVNS can produce greater improvement
than 25 Hz tVNS (Straube et al., 2015). Studies have suggested
that a frequency between 1 and 30 Hz, pulse width of 130–1000
µs and intensity of 4–6 mA is sufficient to elicit a therapeutic
effect (Fang et al., 2016; Rong et al., 2016). Therefore, the
suggested parameters for tVNS treatment of ASD may set a
frequency between 1 and 30 Hz, or altered frequency between 1
and 30 Hz.

Likewise, there is no systemic study on the intensity of
tVNS. Previous studies suggested that stimulation intensity could
be set to a level that could arouse a tingling but tolerable
sensation (Rong et al., 2016). More research is needed to
explore the optimal tVNS parameters for different subgroups
of ASD.

tVNS is a fairly safe treatment method. The reported
mild/moderate side effects include local problems at stimulation
sites, such as pain, paresthesia, or pruritus during or after
stimulation; erythema, ulcers or scabs, (Straube et al., 2015) and
tinnitus (Rong et al., 2016). One potential concern for tVNS is
its long-term cardiac safety. But in a recent study published in
Frontiers in Psychiatry, Kreuzer et al. measured EKG changes

after 24 months of tVNS and found that tVNS has no arrhythmic
effects on cardiac function in tinnitus patients with no known
pre-existing cardiac pathology (Kreuzer et al., 2012). This study
endorsed the safety of long-term application of the tVNS.

In summary, tVNS may be a promising method for treating
ASD. It holds the potential to not only relieve core symptoms of
ASD, but also comorbidities of ASD such as epilepsy, depression,
and anxiety. As a non-invasive, low-cost and convenient method
with no side-effects on heart rate and blood pressure or
peripheral microcirculation, tVNS is a promising treatment
option for ASD (Kraus et al., 2007; Frangos et al., 2015).
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